3.130 \(\int \frac {\sin (e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=76 \[ -\frac {2 b \sec (e+f x)}{f (a-b)^2 \sqrt {a+b \sec ^2(e+f x)-b}}-\frac {\cos (e+f x)}{f (a-b) \sqrt {a+b \sec ^2(e+f x)-b}} \]

[Out]

-cos(f*x+e)/(a-b)/f/(a-b+b*sec(f*x+e)^2)^(1/2)-2*b*sec(f*x+e)/(a-b)^2/f/(a-b+b*sec(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3664, 271, 191} \[ -\frac {2 b \sec (e+f x)}{f (a-b)^2 \sqrt {a+b \sec ^2(e+f x)-b}}-\frac {\cos (e+f x)}{f (a-b) \sqrt {a+b \sec ^2(e+f x)-b}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-(Cos[e + f*x]/((a - b)*f*Sqrt[a - b + b*Sec[e + f*x]^2])) - (2*b*Sec[e + f*x])/((a - b)^2*f*Sqrt[a - b + b*Se
c[e + f*x]^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 3664

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p)/x^(
m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sin (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{x^2 \left (a-b+b x^2\right )^{3/2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {\cos (e+f x)}{(a-b) f \sqrt {a-b+b \sec ^2(e+f x)}}-\frac {(2 b) \operatorname {Subst}\left (\int \frac {1}{\left (a-b+b x^2\right )^{3/2}} \, dx,x,\sec (e+f x)\right )}{(a-b) f}\\ &=-\frac {\cos (e+f x)}{(a-b) f \sqrt {a-b+b \sec ^2(e+f x)}}-\frac {2 b \sec (e+f x)}{(a-b)^2 f \sqrt {a-b+b \sec ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.61, size = 72, normalized size = 0.95 \[ -\frac {\sec (e+f x) ((a-b) \cos (2 (e+f x))+a+3 b)}{\sqrt {2} f (a-b)^2 \sqrt {\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-(((a + 3*b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x])/(Sqrt[2]*(a - b)^2*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*
x)])*Sec[e + f*x]^2]))

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 104, normalized size = 1.37 \[ -\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{{\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{2} b - 2 \, a b^{2} + b^{3}\right )} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

-((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^3 - 3*a^2*b
 + 3*a*b^2 - b^3)*f*cos(f*x + e)^2 + (a^2*b - 2*a*b^2 + b^3)*f)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)2/f*2*(2*(-(-8*b^3*sign(tan((f*x+exp(1))/2)^2-1)+8*a*b^2*sign(tan((f*x+exp(1))/2)^2-1))/(64*b^4-192*a*b^3+
192*a^2*b^2-64*a^3*b)-tan((f*x+exp(1))/2)^2*(-8*b^3*sign(tan((f*x+exp(1))/2)^2-1)+8*a*b^2*sign(tan((f*x+exp(1)
)/2)^2-1))/(64*b^4-192*a*b^3+192*a^2*b^2-64*a^3*b))/sqrt(a*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+exp(1))/2)^2+4*b
*tan((f*x+exp(1))/2)^2+a)+2*(-sqrt(a)*tan((f*x+exp(1))/2)^2+sqrt(a)+sqrt(a*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+
exp(1))/2)^2+4*b*tan((f*x+exp(1))/2)^2+a))/(-2*a*sign(tan((f*x+exp(1))/2)^2-1)+2*b*sign(tan((f*x+exp(1))/2)^2-
1))/(-2*sqrt(a)*(-sqrt(a)*tan((f*x+exp(1))/2)^2+sqrt(a*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+exp(1))/2)^2+4*b*tan
((f*x+exp(1))/2)^2+a))+(-sqrt(a)*tan((f*x+exp(1))/2)^2+sqrt(a*tan((f*x+exp(1))/2)^4-2*a*tan((f*x+exp(1))/2)^2+
4*b*tan((f*x+exp(1))/2)^2+a))^2-3*a+4*b))

________________________________________________________________________________________

maple [A]  time = 0.35, size = 103, normalized size = 1.36 \[ -\frac {\left (a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b \right ) \left (a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +2 b \right )}{f \left (\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\cos \left (f x +e \right )^{2}}\right )^{\frac {3}{2}} \cos \left (f x +e \right )^{3} \left (a -b \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

-1/f*(a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)*(a*cos(f*x+e)^2-cos(f*x+e)^2*b+2*b)/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/
cos(f*x+e)^2)^(3/2)/cos(f*x+e)^3/(a-b)^2

________________________________________________________________________________________

maxima [A]  time = 0.63, size = 83, normalized size = 1.09 \[ -\frac {\frac {\sqrt {a - b + \frac {b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a^{2} - 2 \, a b + b^{2}} + \frac {b}{{\left (a^{2} - 2 \, a b + b^{2}\right )} \sqrt {a - b + \frac {b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

-(sqrt(a - b + b/cos(f*x + e)^2)*cos(f*x + e)/(a^2 - 2*a*b + b^2) + b/((a^2 - 2*a*b + b^2)*sqrt(a - b + b/cos(
f*x + e)^2)*cos(f*x + e)))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sin \left (e+f\,x\right )}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)/(a + b*tan(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)/(a + b*tan(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin {\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral(sin(e + f*x)/(a + b*tan(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________